Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Clin Infect Dis ; 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-2233286

ABSTRACT

We used variant typing PCR to describe the evolution of SARS-CoV-2 Omicron sublineages between December 2021 and mid-March 2022. The selective advantage of the BA.2 variant over BA.1 is not due to greater nasopharyngeal viral loads.

2.
J Med Virol ; 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2233285

ABSTRACT

The present study aimed to determine whether current commercial immunoassays are adequate for detecting anti-Omicron antibodies. We analyzed the anti-SARS-CoV-2 antibody response of 23 unvaccinated individuals 1-2 months after an Omicron infection. All blood samples were tested with a live virus neutralization assay using a clinical Omicron BA.1 strain and four commercial SARS-CoV-2 immunoassays. We assessed three anti-Spike immunoassays (SARS-CoV-2 IgG II Quant [Abbott S], Wantaï anti-SARS-CoV-2 antibody ELISA [Wantaï], Elecsys Anti-SARS-CoV-2 S assay [Roche]) and one anti-Nucleocapsid immunoassay (Abbott SARS-CoV-2 IgG assay [Abbott N]). Omicron neutralizing antibodies were detected in all samples with the live virus neutralization assay. The detection rate of the Abbott S, Wantai, Roche, and Abbott N immunoassays were 65.2%, 69.6%, 86.9%, and 91.3%, respectively. The sensitivities of Abbott S and Wantai immunoassays were significantly lower than that of the live virus neutralization assay (p = 0.004, p = 0.009; Fisher's exact test). Antibody concentrations obtained with anti-S immunoassays were correlated with Omicron neutralizing antibody concentrations. These data provide clinical evidence of the loss of performance of some commercial immunoassays to detect antibodies elicited by Omicron infections. It highlights the need to optimize these assays by adapting antigens to the circulating SARS-CoV-2 strains.

3.
Microbiol Spectr ; : e0252122, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2097938

ABSTRACT

The Omicron variant differs from earlier strains of SARS-CoV-2 in the way it enters host cells and grows in vitro. We therefore reevaluated its diagnosis using saliva, nasopharyngeal swab (NPs), and anterior nasal swab (ANs) specimens from 202 individuals (64.9% symptomatic) tested at the Toulouse University Hospital SARS-CoV-2 drive-through testing center. All tests were done with the Thermo Fisher TaqPath COVID-19 reverse transcription-PCR (RT-PCR) kit. Overall, 92 subjects (45.5%) had one or more positive specimens. Global sensitivities of saliva, NPs, and ANs were 94.6%, 90.2%, and 82.6%, respectively. Saliva provided significantly greater sensitivity among symptomatic patients tested within 5 days of symptom onset (100%) than did ANs (83.1%) or NPs (89.8%). We obtained follow-up samples for 7/20 individuals with discordant results. Among them, 5 symptomatic patients were diagnosed positive on saliva sample only, soon after symptom onset; NPs and ANs became positive only later. Thus, saliva samples are effective tools for the detection of the Omicron variant. In addition to its many advantages, such as improved patient acceptance and reduced cost, saliva sampling could help limit viral spread through earlier viral detection. IMPORTANCE Diagnostic testing for SARS-CoV-2 is an essential component of the global strategy for the prevention and control of COVID-19. Since the beginning of the pandemic, numerous studies have evaluated the diagnostic sensitivity of different respiratory and oral specimens for SARS-CoV-2 detection. The pandemic has been since dominated by the emergence of new variants, the latest being the Omicron variant characterized by numerous mutations and changes in host tropism in vitro that might affect the diagnostic performance of tests depending on the sampling location. In this prospective study, we evaluated the clinical performance of NPs, ANs, and saliva for SARS-CoV-2 diagnosis during the Omicron wave. Our results highlight the effectiveness of saliva-based RT-PCR for the early detection of the Omicron variant. These findings may help to refine guidelines and support the use of a highly sensitive diagnostic method that allows earlier diagnosis, when transmission is the most critical.

4.
Vaccines (Basel) ; 10(9)2022 Sep 17.
Article in English | MEDLINE | ID: covidwho-2044020

ABSTRACT

The emergence of the SARS-CoV-2 variants of concern has greatly influenced the immune correlates of protection, and there are little data about the antibody threshold concentrations to protect against infection with SARS-CoV-2 Omicron BA.1 or BA.2. We analyzed the antibody responses of 259 vaccinated healthcare workers, some of whom had been previously infected by SARS-CoV-2. The median follow-up was 179 days (IQR: 171-182) after blood collection. We detected 88 SARS-CoV-2 Omicron infections during the follow-up period, 55 (62.5%) with SARS-CoV-2 BA.1, and 33 (37.5%) with SARS-CoV-2 BA.2. A neutralizing antibody titer below 8 provided no protection against a BA.1 infection, a titer of 16 or 32 gave 73.2% protection, and a titer of 64 or 128 provided 78.4% protection. Conversely, the BA.2 infection rate did not vary as a function of anti-BA.2 neutralizing antibody titers. Binding antibody concentrations below 6000 BAU/mL provided no protection against Omicron BA.1 infection, 6000-20,000 BAU/mL provided 55.6% protection, and 20,000 or more provided 87.7% protection. There was no difference in BA.2 infection depending on the binding antibody concentration. Further studies are needed to investigate the relationship between antibody concentrations and infection with the Omicron BA.4/5 variants that are becoming predominant worldwide.

5.
Int J Infect Dis ; 123: 52-53, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2031338

ABSTRACT

We identified an additional case of documented Rotavirus meningitis in an adult with full medical history. A previously healthy 37-year-old patient presented herself for transient aphasia associated with fever and headaches at the end of a one-week history of gastroenteritis. Cerebrospinal fluid (CSF) analysis revealed lymphocytic meningitis, and treatment with aciclovir was initiated. Rotavirus A reverse transcription-polymerase chain reaction (RT-PCR) was positive in CSF and the patient's stools in favor of Rotavirus meningitis. Testing for other viruses was negative. Magnetic resonance imaging (MRI) showed no signs of encephalitis. Aphasia was resolutive in less than 12 hours, and no neurological symptoms relapsed. All symptoms evolved favorably despite aciclovir discontinuation. Viral sequencing methods have recently identified unexpected viruses as potential causative agents in meningitis, including Rotavirus. We confirm the detectability of Rotavirus in the analysis of CSF in the context of Rotavirus gastroenteritis in an adult. This case suggests postviral headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) syndrome may be linked to previously undetected direct viral infection of the central nervous system. Therefore, clinicians should consider Rotavirus meningitis in diagnosing meningitis associated with gastroenteritis in adults.


Subject(s)
Aphasia , Gastroenteritis , Meningitis , Rotavirus , Acyclovir , Adult , Aphasia/complications , Gastroenteritis/complications , Gastroenteritis/diagnosis , Headache/cerebrospinal fluid , Headache/diagnosis , Headache/etiology , Humans , Meningitis/complications
6.
Health Sci Rep ; 5(5): e703, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1976714

ABSTRACT

Background and Aims: Direct virological diagnosis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infectionis based on either viral antigen or viral genome detection. These methods, in addition to the dedicated reagents and transport packaging, require the use of quantities of plastic that may individually appear negligible but which, in the context of a pandemic, are very high. The aim was to estimate the amount of plastic involved in a diagnostic assay whether molecular or antigenic. Methods: We weighed the plastics used to obtain a diagnostic assay result for SARS-CoV-2 infection in our hospital. Results: Each ready-to-use antigen assay requires about 20 g of plastic whereas the PCR assay implies the use of 30 g. This unit mass, when compared to our laboratory's SARS-CoV-2 genomic screening activity,represents more than 10 tons of plastic for 2021. At our region level (#6.10 inhabitants), more than 350 tons of plastic were used to carry out more than 7 million declared PCR assays and as many antigenic assays. Conclusions: The virologic diagnostic activityl inked to the SARS-CoV-2 pandemic has highlighted once more our dependance for plastic use. We must already think about a more environmentally virtuous diagnostic activity by integrating a reasonned use of diagnostic tools and a higher use of ecological friendly material. Parallel the notion of waste management must also be addressed in order to limit their environmental impact.

9.
Viruses ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: covidwho-1674823

ABSTRACT

Studies comparing SARS-CoV-2 nasopharyngeal (NP) viral load (VL) according to virus variant and host vaccination status have yielded inconsistent results. We conducted a single center prospective study between July and September 2021 at the drive-through testing center of the Toulouse University Hospital. We compared the NP VL of 3775 patients infected by the Delta (n = 3637) and Alpha (n = 138) variants, respectively. Patient's symptoms and vaccination status (2619 unvaccinated, 636 one dose and 520 two doses) were recorded. SARS-CoV-2 RNA testing and variant screening were assessed by using Thermo Fisher® TaqPath™ COVID-19 and ID solutions® ID™ SARS-CoV-2/VOC evolution Pentaplex assays. Delta SARS-CoV-2 infections were associated with higher VL than Alpha (coef = 0.68; p ≤ 0.01) independently of patient's vaccination status, symptoms, age and sex. This difference was higher for patients diagnosed late after symptom onset (coef = 0.88; p = 0.01) than for those diagnosed early (coef = 0.43; p = 0.03). Infections in vaccinated patients were associated with lower VL (coef = -0.18; p ≤ 0.01) independently of virus variant, symptom, age and sex. Our results suggest that Delta infections could lead to higher VL and for a longer period compared to Alpha infections. By effectively reducing the NP VL, vaccination could allow for limiting viral spread, even with the Delta variant.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , RNA, Viral/genetics , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Viral Load/immunology , Viral Load/statistics & numerical data , Adult , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Hospitalization , Humans , Male , Nasopharynx/virology , Prospective Studies , SARS-CoV-2/genetics , Viral Load/methods , Young Adult
12.
Viruses ; 13(12)2021 12 18.
Article in English | MEDLINE | ID: covidwho-1580423

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causal agent of the COVID-19 pandemic that emerged in late 2019. The outbreak of variants with mutations in the region encoding the spike protein S1 sub-unit that can make them more resistant to neutralizing or monoclonal antibodies is the main point of the current monitoring. This study examines the feasibility of predicting the variant lineage and monitoring the appearance of reported mutations by sequencing only the region encoding the S1 domain by Pacific Bioscience Single Molecule Real-Time sequencing (PacBio SMRT). Using the PacBio SMRT system, we successfully sequenced 186 of the 200 samples previously sequenced with the Illumina COVIDSeq (whole genome) system. PacBio SMRT detected mutations in the S1 domain that were missed by the COVIDseq system in 27/186 samples (14.5%), due to amplification failure. These missing positions included mutations that are decisive for lineage assignation, such as G142D (n = 11), N501Y (n = 6), or E484K (n = 2). The lineage of 172/186 (92.5%) samples was accurately determined by analyzing the region encoding the S1 domain with a pipeline that uses key positions in S1. Thus, the PacBio SMRT protocol is appropriate for determining virus lineages and detecting key mutations.


Subject(s)
SARS-CoV-2/genetics , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , Genotype , Humans , Mutation , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/classification , Sequence Analysis, DNA/methods
13.
Diagn Microbiol Infect Dis ; 101(3): 115478, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1309208

ABSTRACT

Control of the rapid spread of the SARS-CoV-2 virus requires efficient testing. We collected paired nasopharyngeal swab (NPs) and saliva samples from 303 subjects (52.8% symptomatic) at a drive-through testing center; 18% of whom tested positive. The NPs, salivas and five saliva pools were tested for SARS-CoV-2 RNA using the Aptima™ assay and a laboratory-developed test (LDT) on the Panther-Fusion™ Hologic® platform. The saliva sensitivity was 80% (LDT) and 87.5% (Aptima™) whereas that of NPs was 96.4% in both assays. The pooled saliva sensitivity of 72.7% (LDT) and 75% (Aptima™) was not significantly different of that of individual saliva testing. Saliva specimens appear to be suitable for sensitive non-invasive assays to detect SARS-CoV-2 nucleic acid; pooling them for a single test will improve laboratory throughput.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Saliva/virology , Humans , Nasopharynx/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL